QModem/quectel_MHI/src/core/mhi_init.c
2024-03-26 16:50:48 +08:00

2774 lines
72 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. */
#include <linux/kernel.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/uaccess.h>
#include <asm/uaccess.h>
#include <linux/version.h>
#if (LINUX_VERSION_CODE > KERNEL_VERSION( 4,11,0 ))
#include <linux/sched/signal.h>
#else
#include <linux/signal.h>
#endif
#include "mhi.h"
#include "mhi_internal.h"
struct mhi_controller_map {
u32 dev_id;
u32 domain;
u32 bus;
u32 slot;
struct mhi_controller *mhi_cntrl;
};
#define MAX_MHI_CONTROLLER 16
struct mhi_controller_map mhi_controller_minors[MAX_MHI_CONTROLLER];
#define MHI_CNTRL_DRIVER_NAME "mhi_cntrl_q"
struct mhi_cntrl_drv {
struct list_head head;
struct mutex lock;
struct class *class;
int major;
};
static struct mhi_cntrl_drv mhi_cntrl_drv;
const char * const mhi_ee_str[MHI_EE_MAX] = {
[MHI_EE_PBL] = "PBL",
[MHI_EE_SBL] = "SBL",
[MHI_EE_AMSS] = "AMSS",
[MHI_EE_RDDM] = "RDDM",
[MHI_EE_WFW] = "WFW",
[MHI_EE_PTHRU] = "PASS THRU",
[MHI_EE_EDL] = "EDL",
[MHI_EE_FP] = "FlashProg",
[MHI_EE_DISABLE_TRANSITION] = "DISABLE",
};
const char * const mhi_state_tran_str[MHI_ST_TRANSITION_MAX] = {
[MHI_ST_TRANSITION_PBL] = "PBL",
[MHI_ST_TRANSITION_READY] = "READY",
[MHI_ST_TRANSITION_SBL] = "SBL",
[MHI_ST_TRANSITION_MISSION_MODE] = "MISSION MODE",
[MHI_ST_TRANSITION_FP] = "FlashProg",
};
const char * const mhi_state_str[MHI_STATE_MAX] = {
[MHI_STATE_RESET] = "RESET",
[MHI_STATE_READY] = "READY",
[MHI_STATE_M0] = "M0",
[MHI_STATE_M1] = "M1",
[MHI_STATE_M2] = "M2",
[MHI_STATE_M3] = "M3",
[MHI_STATE_BHI] = "BHI",
[MHI_STATE_SYS_ERR] = "SYS_ERR",
};
static const char * const mhi_pm_state_str[] = {
[MHI_PM_BIT_DISABLE] = "DISABLE",
[MHI_PM_BIT_POR] = "POR",
[MHI_PM_BIT_M0] = "M0",
[MHI_PM_BIT_M2] = "M2",
[MHI_PM_BIT_M3_ENTER] = "M?->M3",
[MHI_PM_BIT_M3] = "M3",
[MHI_PM_BIT_M3_EXIT] = "M3->M0",
[MHI_PM_BIT_FW_DL_ERR] = "FW DL Error",
[MHI_PM_BIT_SYS_ERR_DETECT] = "SYS_ERR Detect",
[MHI_PM_BIT_SYS_ERR_PROCESS] = "SYS_ERR Process",
[MHI_PM_BIT_SHUTDOWN_PROCESS] = "SHUTDOWN Process",
[MHI_PM_BIT_LD_ERR_FATAL_DETECT] = "LD or Error Fatal Detect",
};
struct mhi_bus mhi_bus;
const char *to_mhi_pm_state_str(enum MHI_PM_STATE state)
{
int index = find_last_bit((unsigned long *)&state, 32);
if (index >= ARRAY_SIZE(mhi_pm_state_str))
return "Invalid State";
return mhi_pm_state_str[index];
}
#if 0
/* MHI protocol require transfer ring to be aligned to ring length */
static int mhi_alloc_aligned_ring(struct mhi_controller *mhi_cntrl,
struct mhi_ring *ring,
u64 len)
{
ring->alloc_size = len + (len - 1);
ring->pre_aligned = mhi_alloc_coherent(mhi_cntrl, ring->alloc_size,
&ring->dma_handle, GFP_KERNEL);
if (!ring->pre_aligned)
return -ENOMEM;
ring->iommu_base = (ring->dma_handle + (len - 1)) & ~(len - 1);
ring->base = ring->pre_aligned + (ring->iommu_base - ring->dma_handle);
return 0;
}
#endif
static void mhi_ring_aligned_check(struct mhi_controller *mhi_cntrl, u64 rbase, u64 rlen) {
uint64_t ra;
ra = rbase;
do_div(ra, roundup_pow_of_two(rlen));
if (rbase != ra * roundup_pow_of_two(rlen)) {
MHI_ERR("bad params ring base not aligned 0x%llx align 0x%lx\n", rbase, roundup_pow_of_two(rlen));
}
}
void mhi_deinit_free_irq(struct mhi_controller *mhi_cntrl)
{
int i;
struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
if (mhi_cntrl->msi_allocated == 1) {
free_irq(mhi_cntrl->irq[mhi_cntrl->msi_irq_base], mhi_cntrl);
return;
}
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
if (mhi_event->offload_ev)
continue;
free_irq(mhi_cntrl->irq[mhi_event->msi], mhi_event);
}
free_irq(mhi_cntrl->irq[mhi_cntrl->msi_irq_base], mhi_cntrl);
}
int mhi_init_irq_setup(struct mhi_controller *mhi_cntrl)
{
int i;
int ret;
struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
if (mhi_cntrl->msi_allocated == 1) {
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
mhi_event->msi = 0;
}
ret = request_threaded_irq(mhi_cntrl->irq[0], NULL,
mhi_one_msi_handlr, IRQF_ONESHOT, "mhi", mhi_cntrl);
if (ret) {
MHI_ERR("Error requesting irq:%d, ret=%d\n", mhi_cntrl->irq[0], ret);
}
return ret;
}
/* for BHI INTVEC msi */
ret = request_threaded_irq(mhi_cntrl->irq[mhi_cntrl->msi_irq_base], mhi_intvec_handlr,
mhi_intvec_threaded_handlr, IRQF_ONESHOT,
"mhi", mhi_cntrl);
if (ret)
return ret;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
if (mhi_event->offload_ev)
continue;
ret = request_irq(mhi_cntrl->irq[mhi_event->msi],
mhi_msi_handlr, IRQF_SHARED, "mhi",
mhi_event);
if (ret) {
MHI_ERR("Error requesting irq:%d for ev:%d\n",
mhi_cntrl->irq[mhi_event->msi], i);
goto error_request;
}
}
return 0;
error_request:
for (--i, --mhi_event; i >= 0; i--, mhi_event--) {
if (mhi_event->offload_ev)
continue;
free_irq(mhi_cntrl->irq[mhi_event->msi], mhi_event);
}
free_irq(mhi_cntrl->irq[0], mhi_cntrl);
return ret;
}
void mhi_deinit_dev_ctxt(struct mhi_controller *mhi_cntrl)
{
int i;
struct mhi_ctxt *mhi_ctxt = mhi_cntrl->mhi_ctxt;
struct mhi_cmd *mhi_cmd;
struct mhi_event *mhi_event;
struct mhi_ring *ring;
mhi_cmd = mhi_cntrl->mhi_cmd;
for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++) {
ring = &mhi_cmd->ring;
#if 0
mhi_free_coherent(mhi_cntrl, ring->alloc_size,
ring->pre_aligned, ring->dma_handle);
#endif
ring->base = NULL;
ring->iommu_base = 0;
}
#if 0
mhi_free_coherent(mhi_cntrl,
sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS,
mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr);
#endif
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
if (mhi_event->offload_ev)
continue;
ring = &mhi_event->ring;
#if 0
mhi_free_coherent(mhi_cntrl, ring->alloc_size,
ring->pre_aligned, ring->dma_handle);
#endif
ring->base = NULL;
ring->iommu_base = 0;
}
#if 0
mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->er_ctxt) *
mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt,
mhi_ctxt->er_ctxt_addr);
mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->chan_ctxt) *
mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt,
mhi_ctxt->chan_ctxt_addr);
#endif
mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->ctrl_seg), mhi_ctxt->ctrl_seg, mhi_ctxt->ctrl_seg_addr);
kfree(mhi_ctxt);
mhi_cntrl->mhi_ctxt = NULL;
}
static int mhi_init_debugfs_mhi_states_open(struct inode *inode,
struct file *fp)
{
return single_open(fp, mhi_debugfs_mhi_states_show, inode->i_private);
}
static int mhi_init_debugfs_mhi_event_open(struct inode *inode, struct file *fp)
{
return single_open(fp, mhi_debugfs_mhi_event_show, inode->i_private);
}
static int mhi_init_debugfs_mhi_chan_open(struct inode *inode, struct file *fp)
{
return single_open(fp, mhi_debugfs_mhi_chan_show, inode->i_private);
}
static const struct file_operations debugfs_state_ops = {
.open = mhi_init_debugfs_mhi_states_open,
.release = single_release,
.read = seq_read,
};
static const struct file_operations debugfs_ev_ops = {
.open = mhi_init_debugfs_mhi_event_open,
.release = single_release,
.read = seq_read,
};
static const struct file_operations debugfs_chan_ops = {
.open = mhi_init_debugfs_mhi_chan_open,
.release = single_release,
.read = seq_read,
};
DEFINE_SIMPLE_ATTRIBUTE(debugfs_trigger_reset_fops, NULL,
mhi_debugfs_trigger_reset, "%llu\n");
#ifdef ENABLE_MHI_MON
struct mon_event_text {
struct list_head e_link;
int type; /* submit, complete, etc. */
unsigned int tstamp;
u32 chan;
dma_addr_t wp;
struct mhi_tre mhi_tre;
u8 data[32];
size_t len;
};
#define EVENT_MAX (16*PAGE_SIZE / sizeof(struct mon_event_text))
#define PRINTF_DFL 250
#define SLAB_NAME_SZ 30
struct mon_reader_text {
struct kmem_cache *e_slab;
int nevents;
struct list_head e_list;
struct mon_reader r; /* In C, parent class can be placed anywhere */
wait_queue_head_t wait;
int printf_size;
char *printf_buf;
int left_size;
int left_pos;
struct mutex printf_lock;
char slab_name[SLAB_NAME_SZ];
};
struct mon_text_ptr {
int cnt, limit;
char *pbuf;
};
static DEFINE_MUTEX(mon_lock);
static inline unsigned int mon_get_timestamp(void)
{
struct timespec64 now;
unsigned int stamp;
ktime_get_ts64(&now);
stamp = now.tv_sec & 0xFFF; /* 2^32 = 4294967296. Limit to 4096s. */
stamp = stamp * USEC_PER_SEC + now.tv_nsec / NSEC_PER_USEC;
return stamp;
}
static void mon_text_event(struct mon_reader_text *rp,
u32 chan, dma_addr_t wp, struct mhi_tre *mhi_tre, void *buf, size_t len,
char ev_type)
{
struct mon_event_text *ep;
if (rp->nevents >= EVENT_MAX ||
(ep = kmem_cache_alloc(rp->e_slab, GFP_ATOMIC)) == NULL) {
rp->r.m_bus->cnt_text_lost++;
return;
}
ep->type = ev_type;
ep->tstamp = mon_get_timestamp();
ep->chan = chan;
ep->wp = wp;
ep->mhi_tre = *mhi_tre;
if (len > sizeof(ep->data))
len = sizeof(ep->data);
memcpy(ep->data, buf, len);
ep->len = len;
rp->nevents++;
list_add_tail(&ep->e_link, &rp->e_list);
wake_up(&rp->wait);
}
static void mon_text_submit(void *data, u32 chan, dma_addr_t wp, struct mhi_tre *mhi_tre, void *buf, size_t len)
{
struct mon_reader_text *rp = data;
mon_text_event(rp, chan, wp, mhi_tre, buf, len, 'W');
}
static void mon_text_receive(void *data, u32 chan, dma_addr_t wp, struct mhi_tre *mhi_tre, void *buf, size_t len)
{
struct mon_reader_text *rp = data;
mon_text_event(rp, chan, wp, mhi_tre, buf, len, 'R');
}
static void mon_text_complete(void *data, u32 chan, dma_addr_t wp, struct mhi_tre *mhi_tre)
{
struct mon_reader_text *rp = data;
mon_text_event(rp, chan, wp, mhi_tre, NULL, 0, 'E');
}
static void mon_reader_add(struct mhi_controller *mbus, struct mon_reader *r)
{
unsigned long flags;
spin_lock_irqsave(&mbus->lock, flags);
mbus->nreaders++;
list_add_tail(&r->r_link, &mbus->r_list);
spin_unlock_irqrestore(&mbus->lock, flags);
kref_get(&mbus->ref);
}
static void mon_bus_drop(struct kref *r)
{
struct mhi_controller *mbus = container_of(r, struct mhi_controller, ref);
kfree(mbus);
}
static void mon_reader_del(struct mhi_controller *mbus, struct mon_reader *r)
{
unsigned long flags;
spin_lock_irqsave(&mbus->lock, flags);
list_del(&r->r_link);
--mbus->nreaders;
spin_unlock_irqrestore(&mbus->lock, flags);
kref_put(&mbus->ref, mon_bus_drop);
}
static void mon_text_ctor(void *mem)
{
/*
* Nothing to initialize. No, really!
* So, we fill it with garbage to emulate a reused object.
*/
memset(mem, 0xe5, sizeof(struct mon_event_text));
}
static int mon_text_open(struct inode *inode, struct file *file)
{
struct mhi_controller *mbus;
struct mon_reader_text *rp;
int rc;
mutex_lock(&mon_lock);
mbus = inode->i_private;
rp = kzalloc(sizeof(struct mon_reader_text), GFP_KERNEL);
if (rp == NULL) {
rc = -ENOMEM;
goto err_alloc;
}
INIT_LIST_HEAD(&rp->e_list);
init_waitqueue_head(&rp->wait);
mutex_init(&rp->printf_lock);
rp->printf_size = PRINTF_DFL;
rp->printf_buf = kmalloc(rp->printf_size, GFP_KERNEL);
if (rp->printf_buf == NULL) {
rc = -ENOMEM;
goto err_alloc_pr;
}
rp->r.m_bus = mbus;
rp->r.r_data = rp;
rp->r.rnf_submit = mon_text_submit;
rp->r.rnf_receive = mon_text_receive;
rp->r.rnf_complete = mon_text_complete;
snprintf(rp->slab_name, SLAB_NAME_SZ, "mon_text_%p", rp);
rp->e_slab = kmem_cache_create(rp->slab_name,
sizeof(struct mon_event_text), sizeof(long), 0,
mon_text_ctor);
if (rp->e_slab == NULL) {
rc = -ENOMEM;
goto err_slab;
}
mon_reader_add(mbus, &rp->r);
file->private_data = rp;
mutex_unlock(&mon_lock);
return 0;
// err_busy:
// kmem_cache_destroy(rp->e_slab);
err_slab:
kfree(rp->printf_buf);
err_alloc_pr:
kfree(rp);
err_alloc:
mutex_unlock(&mon_lock);
return rc;
}
static struct mon_event_text *mon_text_fetch(struct mon_reader_text *rp,
struct mhi_controller *mbus)
{
struct list_head *p;
unsigned long flags;
spin_lock_irqsave(&mbus->lock, flags);
if (list_empty(&rp->e_list)) {
spin_unlock_irqrestore(&mbus->lock, flags);
return NULL;
}
p = rp->e_list.next;
list_del(p);
--rp->nevents;
spin_unlock_irqrestore(&mbus->lock, flags);
return list_entry(p, struct mon_event_text, e_link);
}
static struct mon_event_text *mon_text_read_wait(struct mon_reader_text *rp,
struct file *file)
{
struct mhi_controller *mbus = rp->r.m_bus;
DECLARE_WAITQUEUE(waita, current);
struct mon_event_text *ep;
add_wait_queue(&rp->wait, &waita);
set_current_state(TASK_INTERRUPTIBLE);
while ((ep = mon_text_fetch(rp, mbus)) == NULL) {
if (file->f_flags & O_NONBLOCK) {
set_current_state(TASK_RUNNING);
remove_wait_queue(&rp->wait, &waita);
return ERR_PTR(-EWOULDBLOCK);
}
/*
* We do not count nwaiters, because ->release is supposed
* to be called when all openers are gone only.
*/
schedule();
if (signal_pending(current)) {
remove_wait_queue(&rp->wait, &waita);
return ERR_PTR(-EINTR);
}
set_current_state(TASK_INTERRUPTIBLE);
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&rp->wait, &waita);
return ep;
}
static ssize_t mon_text_read_u(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct mon_reader_text *rp = file->private_data;
struct mon_event_text *ep;
struct mon_text_ptr ptr;
if (rp->left_size) {
int cnt = rp->left_size;
if (cnt > nbytes)
cnt = nbytes;
if (copy_to_user(buf, rp->printf_buf + rp->left_pos, cnt))
return -EFAULT;
rp->left_pos += cnt;
rp->left_size -= cnt;
return cnt;
}
if (IS_ERR(ep = mon_text_read_wait(rp, file)))
return PTR_ERR(ep);
mutex_lock(&rp->printf_lock);
ptr.cnt = 0;
ptr.pbuf = rp->printf_buf;
ptr.limit = rp->printf_size;
ptr.cnt += snprintf(ptr.pbuf + ptr.cnt, ptr.limit - ptr.cnt,
"%u %c %03d WP:%llx TRE: %llx %08x %08x",
ep->tstamp, ep->type, ep->chan, (long long unsigned int)ep->wp,
ep->mhi_tre.ptr, ep->mhi_tre.dword[0], ep->mhi_tre.dword[1]);
if (ep->len) {
struct mon_text_ptr *p = &ptr;
size_t i = 0;
for (i = 0; i < ep->len; i++) {
if (i % 4 == 0) {
p->cnt += snprintf(p->pbuf + p->cnt,
p->limit - p->cnt,
" ");
}
p->cnt += snprintf(p->pbuf + p->cnt,
p->limit - p->cnt,
"%02x", ep->data[i]);
}
}
ptr.cnt += snprintf(ptr.pbuf +ptr.cnt, ptr.limit - ptr.cnt, "\n");
if (ptr.cnt > nbytes) {
rp->left_pos = nbytes;
rp->left_size = ptr.cnt - nbytes;
ptr.cnt = nbytes;
}
if (copy_to_user(buf, rp->printf_buf, ptr.cnt))
ptr.cnt = -EFAULT;
mutex_unlock(&rp->printf_lock);
kmem_cache_free(rp->e_slab, ep);
return ptr.cnt;
}
static int mon_text_release(struct inode *inode, struct file *file)
{
struct mon_reader_text *rp = file->private_data;
struct mhi_controller *mbus;
/* unsigned long flags; */
struct list_head *p;
struct mon_event_text *ep;
mutex_lock(&mon_lock);
mbus = inode->i_private;
if (mbus->nreaders <= 0) {
mutex_unlock(&mon_lock);
return 0;
}
mon_reader_del(mbus, &rp->r);
/*
* In theory, e_list is protected by mbus->lock. However,
* after mon_reader_del has finished, the following is the case:
* - we are not on reader list anymore, so new events won't be added;
* - whole mbus may be dropped if it was orphaned.
* So, we better not touch mbus.
*/
/* spin_lock_irqsave(&mbus->lock, flags); */
while (!list_empty(&rp->e_list)) {
p = rp->e_list.next;
ep = list_entry(p, struct mon_event_text, e_link);
list_del(p);
--rp->nevents;
kmem_cache_free(rp->e_slab, ep);
}
/* spin_unlock_irqrestore(&mbus->lock, flags); */
kmem_cache_destroy(rp->e_slab);
kfree(rp->printf_buf);
kfree(rp);
mutex_unlock(&mon_lock);
return 0;
}
static const struct file_operations mon_fops_text_u = {
.owner = THIS_MODULE,
.open = mon_text_open,
.llseek = no_llseek,
.read = mon_text_read_u,
.release = mon_text_release,
};
#endif
void mhi_init_debugfs(struct mhi_controller *mhi_cntrl)
{
struct dentry *dentry;
char node[64];
#ifdef ENABLE_MHI_MON
struct mhi_controller *mbus = mhi_cntrl;
mbus->nreaders = 0;
kref_init(&mbus->ref);
spin_lock_init(&mbus->lock);
INIT_LIST_HEAD(&mbus->r_list);
#endif
if (!mhi_cntrl->parent)
snprintf(node, sizeof(node), "mhi_%04x_%02x:%02x.%02x",
mhi_cntrl->dev_id, mhi_cntrl->domain, mhi_cntrl->bus,
mhi_cntrl->slot);
else
snprintf(node, sizeof(node), "%04x_%02x:%02x.%02x",
mhi_cntrl->dev_id, mhi_cntrl->domain, mhi_cntrl->bus,
mhi_cntrl->slot);
dentry = debugfs_create_dir(node, mhi_cntrl->parent);
if (IS_ERR_OR_NULL(dentry))
return;
debugfs_create_file("states", 0444, dentry, mhi_cntrl,
&debugfs_state_ops);
debugfs_create_file("events", 0444, dentry, mhi_cntrl,
&debugfs_ev_ops);
debugfs_create_file("chan", 0444, dentry, mhi_cntrl,
&debugfs_chan_ops);
debugfs_create_file("reset", 0444, dentry, mhi_cntrl,
&debugfs_trigger_reset_fops);
#ifdef ENABLE_MHI_MON
debugfs_create_file("mhimon", 0444, dentry, mhi_cntrl,
&mon_fops_text_u);
#endif
mhi_cntrl->dentry = dentry;
}
void mhi_deinit_debugfs(struct mhi_controller *mhi_cntrl)
{
debugfs_remove_recursive(mhi_cntrl->dentry);
mhi_cntrl->dentry = NULL;
}
int mhi_init_dev_ctxt(struct mhi_controller *mhi_cntrl)
{
struct mhi_ctxt *mhi_ctxt;
struct mhi_chan_ctxt *chan_ctxt;
struct mhi_event_ctxt *er_ctxt;
struct mhi_cmd_ctxt *cmd_ctxt;
struct mhi_chan *mhi_chan;
struct mhi_event *mhi_event;
struct mhi_cmd *mhi_cmd;
int ret = -ENOMEM, i;
atomic_set(&mhi_cntrl->dev_wake, 0);
atomic_set(&mhi_cntrl->alloc_size, 0);
atomic_set(&mhi_cntrl->pending_pkts, 0);
mhi_ctxt = kzalloc(sizeof(*mhi_ctxt), GFP_KERNEL);
if (!mhi_ctxt)
return -ENOMEM;
mhi_ctxt->ctrl_seg = mhi_alloc_coherent(mhi_cntrl, sizeof(*mhi_ctxt->ctrl_seg),
&mhi_ctxt->ctrl_seg_addr, GFP_KERNEL);
MHI_LOG("mhi_ctxt->ctrl_seg = %p\n", mhi_ctxt->ctrl_seg);
if (!mhi_ctxt->ctrl_seg)
goto error_alloc_chan_ctxt;
if ((unsigned long)mhi_ctxt->ctrl_seg & (4096-1)) {
mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->ctrl_seg), mhi_ctxt->ctrl_seg, mhi_ctxt->ctrl_seg_addr);
goto error_alloc_chan_ctxt;
}
/* setup channel ctxt */
#if 1
mhi_ctxt->chan_ctxt = mhi_ctxt->ctrl_seg->chan_ctxt;
mhi_ctxt->chan_ctxt_addr = mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, chan_ctxt);
#else
mhi_ctxt->chan_ctxt = mhi_alloc_coherent(mhi_cntrl,
sizeof(*mhi_ctxt->chan_ctxt) * mhi_cntrl->max_chan,
&mhi_ctxt->chan_ctxt_addr, GFP_KERNEL);
if (!mhi_ctxt->chan_ctxt)
goto error_alloc_chan_ctxt;
#endif
mhi_chan = mhi_cntrl->mhi_chan;
chan_ctxt = mhi_ctxt->chan_ctxt;
for (i = 0; i < mhi_cntrl->max_chan; i++, chan_ctxt++, mhi_chan++) {
/* If it's offload channel skip this step */
if (mhi_chan->offload_ch)
continue;
chan_ctxt->chstate = MHI_CH_STATE_DISABLED;
chan_ctxt->brstmode = mhi_chan->db_cfg.brstmode;
chan_ctxt->pollcfg = mhi_chan->db_cfg.pollcfg;
chan_ctxt->chtype = mhi_chan->type;
chan_ctxt->erindex = mhi_chan->er_index;
mhi_chan->ch_state = MHI_CH_STATE_DISABLED;
mhi_chan->tre_ring.db_addr = &chan_ctxt->wp;
}
/* setup event context */
#if 1
mhi_ctxt->er_ctxt = mhi_ctxt->ctrl_seg->er_ctxt;
mhi_ctxt->er_ctxt_addr = mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, er_ctxt);
#else
mhi_ctxt->er_ctxt = mhi_alloc_coherent(mhi_cntrl,
sizeof(*mhi_ctxt->er_ctxt) * mhi_cntrl->total_ev_rings,
&mhi_ctxt->er_ctxt_addr, GFP_KERNEL);
if (!mhi_ctxt->er_ctxt)
goto error_alloc_er_ctxt;
#endif
er_ctxt = mhi_ctxt->er_ctxt;
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
mhi_event++) {
struct mhi_ring *ring = &mhi_event->ring;
/* it's a satellite ev, we do not touch it */
if (mhi_event->offload_ev)
continue;
er_ctxt->intmodc = 0;
er_ctxt->intmodt = mhi_event->intmod;
er_ctxt->ertype = MHI_ER_TYPE_VALID;
if (mhi_cntrl->msi_allocated == 1) {
mhi_event->msi = 0;
}
er_ctxt->msivec = mhi_event->msi;
mhi_event->db_cfg.db_mode = true;
ring->el_size = sizeof(struct mhi_tre);
ring->len = ring->el_size * ring->elements;
#if 1
ring->alloc_size = ring->len;
ring->pre_aligned = mhi_ctxt->ctrl_seg->event_ring[i];
ring->dma_handle = mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, event_ring[i]);
ring->iommu_base = ring->dma_handle;
ring->base = ring->pre_aligned + (ring->iommu_base - ring->dma_handle);
#else
ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len);
if (ret)
goto error_alloc_er;
#endif
ring->rp = ring->wp = ring->base;
er_ctxt->rbase = ring->iommu_base;
er_ctxt->rp = er_ctxt->wp = er_ctxt->rbase;
er_ctxt->rlen = ring->len;
ring->ctxt_wp = &er_ctxt->wp;
mhi_ring_aligned_check(mhi_cntrl, er_ctxt->rbase, er_ctxt->rlen);
memset(ring->base, 0xCC, ring->len);
}
/* setup cmd context */
#if 1
mhi_ctxt->cmd_ctxt = mhi_ctxt->ctrl_seg->cmd_ctxt;
mhi_ctxt->cmd_ctxt_addr = mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, cmd_ctxt);
#else
mhi_ctxt->cmd_ctxt = mhi_alloc_coherent(mhi_cntrl,
sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS,
&mhi_ctxt->cmd_ctxt_addr, GFP_KERNEL);
if (!mhi_ctxt->cmd_ctxt)
goto error_alloc_er;
#endif
mhi_cmd = mhi_cntrl->mhi_cmd;
cmd_ctxt = mhi_ctxt->cmd_ctxt;
for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
struct mhi_ring *ring = &mhi_cmd->ring;
ring->el_size = sizeof(struct mhi_tre);
ring->elements = CMD_EL_PER_RING;
ring->len = ring->el_size * ring->elements;
#if 1
ring->alloc_size = ring->len;
ring->pre_aligned = mhi_ctxt->ctrl_seg->cmd_ring[i];
ring->dma_handle = mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, cmd_ring[i]);
ring->iommu_base = ring->dma_handle;
ring->base = ring->pre_aligned + (ring->iommu_base - ring->dma_handle);
#else
ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len);
if (ret)
goto error_alloc_cmd;
#endif
ring->rp = ring->wp = ring->base;
cmd_ctxt->rbase = ring->iommu_base;
cmd_ctxt->rp = cmd_ctxt->wp = cmd_ctxt->rbase;
cmd_ctxt->rlen = ring->len;
ring->ctxt_wp = &cmd_ctxt->wp;
mhi_ring_aligned_check(mhi_cntrl, cmd_ctxt->rbase, cmd_ctxt->rlen);
}
mhi_cntrl->mhi_ctxt = mhi_ctxt;
return 0;
#if 0
error_alloc_cmd:
for (--i, --mhi_cmd; i >= 0; i--, mhi_cmd--) {
struct mhi_ring *ring = &mhi_cmd->ring;
mhi_free_coherent(mhi_cntrl, ring->alloc_size,
ring->pre_aligned, ring->dma_handle);
}
mhi_free_coherent(mhi_cntrl,
sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS,
mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr);
i = mhi_cntrl->total_ev_rings;
mhi_event = mhi_cntrl->mhi_event + i;
error_alloc_er:
for (--i, --mhi_event; i >= 0; i--, mhi_event--) {
struct mhi_ring *ring = &mhi_event->ring;
if (mhi_event->offload_ev)
continue;
mhi_free_coherent(mhi_cntrl, ring->alloc_size,
ring->pre_aligned, ring->dma_handle);
}
mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->er_ctxt) *
mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt,
mhi_ctxt->er_ctxt_addr);
error_alloc_er_ctxt:
mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->chan_ctxt) *
mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt,
mhi_ctxt->chan_ctxt_addr);
#endif
error_alloc_chan_ctxt:
kfree(mhi_ctxt);
return ret;
}
static int mhi_get_tsync_er_cfg(struct mhi_controller *mhi_cntrl)
{
int i;
struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
/* find event ring with timesync support */
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++)
if (mhi_event->data_type == MHI_ER_TSYNC_ELEMENT_TYPE)
return mhi_event->er_index;
return -ENOENT;
}
int mhi_init_timesync(struct mhi_controller *mhi_cntrl)
{
struct mhi_timesync *mhi_tsync;
u32 time_offset, db_offset;
int ret;
read_lock_bh(&mhi_cntrl->pm_lock);
if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
ret = -EIO;
goto exit_timesync;
}
ret = mhi_get_capability_offset(mhi_cntrl, TIMESYNC_CAP_ID,
&time_offset);
if (ret) {
MHI_LOG("No timesync capability found\n");
goto exit_timesync;
}
read_unlock_bh(&mhi_cntrl->pm_lock);
if (!mhi_cntrl->time_get || !mhi_cntrl->lpm_disable ||
!mhi_cntrl->lpm_enable)
return -EINVAL;
/* register method supported */
mhi_tsync = kzalloc(sizeof(*mhi_tsync), GFP_KERNEL);
if (!mhi_tsync)
return -ENOMEM;
spin_lock_init(&mhi_tsync->lock);
INIT_LIST_HEAD(&mhi_tsync->head);
init_completion(&mhi_tsync->completion);
/* save time_offset for obtaining time */
MHI_LOG("TIME OFFS:0x%x\n", time_offset);
mhi_tsync->time_reg = mhi_cntrl->regs + time_offset
+ TIMESYNC_TIME_LOW_OFFSET;
mhi_cntrl->mhi_tsync = mhi_tsync;
ret = mhi_create_timesync_sysfs(mhi_cntrl);
if (unlikely(ret)) {
/* kernel method still work */
MHI_ERR("Failed to create timesync sysfs nodes\n");
}
read_lock_bh(&mhi_cntrl->pm_lock);
if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
ret = -EIO;
goto exit_timesync;
}
/* get DB offset if supported, else return */
ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs,
time_offset + TIMESYNC_DB_OFFSET, &db_offset);
if (ret || !db_offset) {
ret = 0;
goto exit_timesync;
}
MHI_LOG("TIMESYNC_DB OFFS:0x%x\n", db_offset);
mhi_tsync->db = mhi_cntrl->regs + db_offset;
read_unlock_bh(&mhi_cntrl->pm_lock);
/* get time-sync event ring configuration */
ret = mhi_get_tsync_er_cfg(mhi_cntrl);
if (ret < 0) {
MHI_LOG("Could not find timesync event ring\n");
return ret;
}
mhi_tsync->er_index = ret;
ret = mhi_send_cmd(mhi_cntrl, NULL, MHI_CMD_TIMSYNC_CFG);
if (ret) {
MHI_ERR("Failed to send time sync cfg cmd\n");
return ret;
}
ret = wait_for_completion_timeout(&mhi_tsync->completion,
msecs_to_jiffies(mhi_cntrl->timeout_ms));
if (!ret || mhi_tsync->ccs != MHI_EV_CC_SUCCESS) {
MHI_ERR("Failed to get time cfg cmd completion\n");
return -EIO;
}
return 0;
exit_timesync:
read_unlock_bh(&mhi_cntrl->pm_lock);
return ret;
}
int mhi_init_mmio(struct mhi_controller *mhi_cntrl)
{
u32 val = 0;
int i, ret;
struct mhi_chan *mhi_chan;
struct mhi_event *mhi_event;
void __iomem *base = mhi_cntrl->regs;
struct {
u32 offset;
u32 mask;
u32 shift;
u32 val;
} reg_info[] = {
{
CCABAP_HIGHER, U32_MAX, 0,
upper_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr),
},
{
CCABAP_LOWER, U32_MAX, 0,
lower_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr),
},
{
ECABAP_HIGHER, U32_MAX, 0,
upper_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr),
},
{
ECABAP_LOWER, U32_MAX, 0,
lower_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr),
},
{
CRCBAP_HIGHER, U32_MAX, 0,
upper_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr),
},
{
CRCBAP_LOWER, U32_MAX, 0,
lower_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr),
},
#if 0 //carl.yin 20190527 UDE-WIN-InitMmio
{
MHICFG, MHICFG_NER_MASK, MHICFG_NER_SHIFT,
mhi_cntrl->total_ev_rings,
},
{
MHICFG, MHICFG_NHWER_MASK, MHICFG_NHWER_SHIFT,
mhi_cntrl->hw_ev_rings,
},
#endif
{
MHICTRLBASE_HIGHER, U32_MAX, 0,
upper_32_bits(mhi_cntrl->mhi_ctxt->ctrl_seg_addr),
},
{
MHICTRLBASE_LOWER, U32_MAX, 0,
lower_32_bits(mhi_cntrl->mhi_ctxt->ctrl_seg_addr),
},
{
MHIDATABASE_HIGHER, U32_MAX, 0,
upper_32_bits(mhi_cntrl->iova_start),
},
{
MHIDATABASE_LOWER, U32_MAX, 0,
lower_32_bits(mhi_cntrl->iova_start),
},
{
MHICTRLLIMIT_HIGHER, U32_MAX, 0,
upper_32_bits(mhi_cntrl->mhi_ctxt->ctrl_seg_addr+sizeof(struct mhi_ctrl_seg)),
},
{
MHICTRLLIMIT_LOWER, U32_MAX, 0,
lower_32_bits(mhi_cntrl->mhi_ctxt->ctrl_seg_addr+sizeof(struct mhi_ctrl_seg)),
},
{
MHIDATALIMIT_HIGHER, U32_MAX, 0,
upper_32_bits(mhi_cntrl->iova_stop),
},
{
MHIDATALIMIT_LOWER, U32_MAX, 0,
lower_32_bits(mhi_cntrl->iova_stop),
},
{ 0, 0, 0, 0 }
};
MHI_LOG("Initializing MMIO\n");
/* set up DB register for all the chan rings */
ret = mhi_read_reg_field(mhi_cntrl, base, CHDBOFF, CHDBOFF_CHDBOFF_MASK,
CHDBOFF_CHDBOFF_SHIFT, &val);
if (ret)
return -EIO;
MHI_LOG("CHDBOFF:0x%x\n", val);
/* setup wake db */
mhi_cntrl->wake_db = base + val + (8 * MHI_DEV_WAKE_DB);
#if 0 //'EM120RGLAPR02A07M4G_11' will treate as chan 127's interrput, and report complete event over cmd ring, but cmd ring is not set by now
mhi_write_reg(mhi_cntrl, mhi_cntrl->wake_db, 4, 0);
mhi_write_reg(mhi_cntrl, mhi_cntrl->wake_db, 0, 0);
mhi_cntrl->wake_set = false;
#endif
/* setup channel db addresses */
mhi_chan = mhi_cntrl->mhi_chan;
for (i = 0; i < mhi_cntrl->max_chan; i++, val += 8, mhi_chan++)
mhi_chan->tre_ring.db_addr = base + val;
/* setup event ring db addresses */
ret = mhi_read_reg_field(mhi_cntrl, base, ERDBOFF, ERDBOFF_ERDBOFF_MASK,
ERDBOFF_ERDBOFF_SHIFT, &val);
if (ret)
return -EIO;
MHI_LOG("ERDBOFF:0x%x\n", val);
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, val += 8, mhi_event++) {
if (mhi_event->offload_ev)
continue;
mhi_event->ring.db_addr = base + val;
}
/* set up DB register for primary CMD rings */
mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING].ring.db_addr = base + CRDB_LOWER;
MHI_LOG("Programming all MMIO values.\n");
for (i = 0; reg_info[i].offset; i++)
mhi_write_reg_field(mhi_cntrl, base, reg_info[i].offset,
reg_info[i].mask, reg_info[i].shift,
reg_info[i].val);
return 0;
}
void mhi_deinit_chan_ctxt(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan)
{
struct mhi_ring *buf_ring;
struct mhi_ring *tre_ring;
struct mhi_chan_ctxt *chan_ctxt;
buf_ring = &mhi_chan->buf_ring;
tre_ring = &mhi_chan->tre_ring;
chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan];
#if 0
mhi_free_coherent(mhi_cntrl, tre_ring->alloc_size,
tre_ring->pre_aligned, tre_ring->dma_handle);
#endif
kfree(buf_ring->base);
buf_ring->base = tre_ring->base = NULL;
chan_ctxt->rbase = 0;
}
int mhi_init_chan_ctxt(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan)
{
struct mhi_ring *buf_ring;
struct mhi_ring *tre_ring;
struct mhi_chan_ctxt *chan_ctxt;
int ret;
buf_ring = &mhi_chan->buf_ring;
tre_ring = &mhi_chan->tre_ring;
tre_ring->el_size = sizeof(struct mhi_tre);
tre_ring->len = tre_ring->el_size * tre_ring->elements;
chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan];
#if 1
tre_ring->alloc_size = tre_ring->len;
if (MHI_CLIENT_IP_HW_0_IN == mhi_chan->chan) {
tre_ring->pre_aligned = &mhi_cntrl->mhi_ctxt->ctrl_seg->hw_in_chan_ring[mhi_chan->ring];
tre_ring->dma_handle = mhi_cntrl->mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, hw_in_chan_ring[mhi_chan->ring]);
}
else if (MHI_CLIENT_IP_HW_0_OUT == mhi_chan->chan) {
tre_ring->pre_aligned = &mhi_cntrl->mhi_ctxt->ctrl_seg->hw_out_chan_ring[mhi_chan->ring];
tre_ring->dma_handle = mhi_cntrl->mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, hw_out_chan_ring[mhi_chan->ring]);
}
#ifdef ENABLE_IP_SW0
else if (MHI_CLIENT_IP_SW_0_IN == mhi_chan->chan) {
tre_ring->pre_aligned = &mhi_cntrl->mhi_ctxt->ctrl_seg->sw_in_chan_ring[mhi_chan->ring];
tre_ring->dma_handle = mhi_cntrl->mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, sw_in_chan_ring[mhi_chan->ring]);
}
else if (MHI_CLIENT_IP_SW_0_OUT == mhi_chan->chan) {
tre_ring->pre_aligned = &mhi_cntrl->mhi_ctxt->ctrl_seg->sw_out_chan_ring[mhi_chan->ring];
tre_ring->dma_handle = mhi_cntrl->mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, sw_out_chan_ring[mhi_chan->ring]);
}
#endif
#ifdef ENABLE_ADPL
else if (MHI_CLIENT_ADPL == mhi_chan->chan) {
tre_ring->pre_aligned = &mhi_cntrl->mhi_ctxt->ctrl_seg->adpl_in_chan_ring[mhi_chan->ring];
tre_ring->dma_handle = mhi_cntrl->mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, adpl_in_chan_ring[mhi_chan->ring]);
}
#endif
#ifdef ENABLE_QDSS
else if (MHI_CLIENT_IP_HW_QDSS == mhi_chan->chan) {
tre_ring->pre_aligned = &mhi_cntrl->mhi_ctxt->ctrl_seg->qdss_in_chan_ring[mhi_chan->ring];
tre_ring->dma_handle = mhi_cntrl->mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, qdss_in_chan_ring[mhi_chan->ring]);
}
#endif
else if (MHI_CLIENT_DIAG_IN == mhi_chan->chan) {
tre_ring->pre_aligned = &mhi_cntrl->mhi_ctxt->ctrl_seg->diag_in_chan_ring[mhi_chan->ring];
tre_ring->dma_handle = mhi_cntrl->mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, diag_in_chan_ring[mhi_chan->ring]);
}
else {
tre_ring->pre_aligned = &mhi_cntrl->mhi_ctxt->ctrl_seg->chan_ring[mhi_chan->ring];
tre_ring->dma_handle = mhi_cntrl->mhi_ctxt->ctrl_seg_addr + offsetof(struct mhi_ctrl_seg, chan_ring[mhi_chan->ring]);
}
tre_ring->iommu_base = tre_ring->dma_handle;
tre_ring->base = tre_ring->pre_aligned + (tre_ring->iommu_base - tre_ring->dma_handle);
ret = 0;
#else
ret = mhi_alloc_aligned_ring(mhi_cntrl, tre_ring, tre_ring->len);
#endif
if (ret)
return -ENOMEM;
buf_ring->el_size = sizeof(struct mhi_buf_info);
buf_ring->len = buf_ring->el_size * buf_ring->elements;
buf_ring->base = kzalloc(buf_ring->len, GFP_KERNEL);
if (!buf_ring->base) {
#if 0
mhi_free_coherent(mhi_cntrl, tre_ring->alloc_size,
tre_ring->pre_aligned, tre_ring->dma_handle);
#endif
return -ENOMEM;
}
chan_ctxt->chstate = MHI_CH_STATE_ENABLED;
chan_ctxt->rbase = tre_ring->iommu_base;
chan_ctxt->rp = chan_ctxt->wp = chan_ctxt->rbase;
chan_ctxt->rlen = tre_ring->len;
tre_ring->ctxt_wp = &chan_ctxt->wp;
tre_ring->rp = tre_ring->wp = tre_ring->base;
buf_ring->rp = buf_ring->wp = buf_ring->base;
mhi_chan->db_cfg.db_mode = true;
mhi_ring_aligned_check(mhi_cntrl, chan_ctxt->rbase, chan_ctxt->rlen);
/* update to all cores */
smp_wmb();
return 0;
}
int mhi_device_configure(struct mhi_device *mhi_dev,
enum dma_data_direction dir,
struct mhi_buf *cfg_tbl,
int elements)
{
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_chan *mhi_chan;
struct mhi_event_ctxt *er_ctxt;
struct mhi_chan_ctxt *ch_ctxt;
int er_index, chan;
switch (dir) {
case DMA_TO_DEVICE:
mhi_chan = mhi_dev->ul_chan;
break;
case DMA_BIDIRECTIONAL:
case DMA_FROM_DEVICE:
case DMA_NONE:
mhi_chan = mhi_dev->dl_chan;
break;
default:
return -EINVAL;
}
er_index = mhi_chan->er_index;
chan = mhi_chan->chan;
for (; elements > 0; elements--, cfg_tbl++) {
/* update event context array */
if (!strcmp(cfg_tbl->name, "ECA")) {
er_ctxt = &mhi_cntrl->mhi_ctxt->er_ctxt[er_index];
if (sizeof(*er_ctxt) != cfg_tbl->len) {
MHI_ERR(
"Invalid ECA size, expected:%zu actual%zu\n",
sizeof(*er_ctxt), cfg_tbl->len);
return -EINVAL;
}
memcpy((void *)er_ctxt, cfg_tbl->buf, sizeof(*er_ctxt));
continue;
}
/* update channel context array */
if (!strcmp(cfg_tbl->name, "CCA")) {
ch_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[chan];
if (cfg_tbl->len != sizeof(*ch_ctxt)) {
MHI_ERR(
"Invalid CCA size, expected:%zu actual:%zu\n",
sizeof(*ch_ctxt), cfg_tbl->len);
return -EINVAL;
}
memcpy((void *)ch_ctxt, cfg_tbl->buf, sizeof(*ch_ctxt));
continue;
}
return -EINVAL;
}
return 0;
}
#if 0
static int of_parse_ev_cfg(struct mhi_controller *mhi_cntrl,
struct device_node *of_node)
{
int i, ret, num = 0;
struct mhi_event *mhi_event;
struct device_node *child;
of_node = of_find_node_by_name(of_node, "mhi_events");
if (!of_node)
return -EINVAL;
for_each_available_child_of_node(of_node, child) {
if (!strcmp(child->name, "mhi_event"))
num++;
}
if (!num)
return -EINVAL;
mhi_cntrl->total_ev_rings = num;
mhi_cntrl->mhi_event = kcalloc(num, sizeof(*mhi_cntrl->mhi_event),
GFP_KERNEL);
if (!mhi_cntrl->mhi_event)
return -ENOMEM;
/* populate ev ring */
mhi_event = mhi_cntrl->mhi_event;
i = 0;
for_each_available_child_of_node(of_node, child) {
if (strcmp(child->name, "mhi_event"))
continue;
mhi_event->er_index = i++;
ret = of_property_read_u32(child, "mhi,num-elements",
(u32 *)&mhi_event->ring.elements);
if (ret)
goto error_ev_cfg;
ret = of_property_read_u32(child, "mhi,intmod",
&mhi_event->intmod);
if (ret)
goto error_ev_cfg;
ret = of_property_read_u32(child, "mhi,msi",
&mhi_event->msi);
if (ret)
goto error_ev_cfg;
ret = of_property_read_u32(child, "mhi,chan",
&mhi_event->chan);
if (!ret) {
if (mhi_event->chan >= mhi_cntrl->max_chan)
goto error_ev_cfg;
/* this event ring has a dedicated channel */
mhi_event->mhi_chan =
&mhi_cntrl->mhi_chan[mhi_event->chan];
}
ret = of_property_read_u32(child, "mhi,priority",
&mhi_event->priority);
if (ret)
goto error_ev_cfg;
ret = of_property_read_u32(child, "mhi,brstmode",
&mhi_event->db_cfg.brstmode);
if (ret || MHI_INVALID_BRSTMODE(mhi_event->db_cfg.brstmode))
goto error_ev_cfg;
mhi_event->db_cfg.process_db =
(mhi_event->db_cfg.brstmode == MHI_BRSTMODE_ENABLE) ?
mhi_db_brstmode : mhi_db_brstmode_disable;
ret = of_property_read_u32(child, "mhi,data-type",
&mhi_event->data_type);
if (ret)
mhi_event->data_type = MHI_ER_DATA_ELEMENT_TYPE;
if (mhi_event->data_type > MHI_ER_DATA_TYPE_MAX)
goto error_ev_cfg;
switch (mhi_event->data_type) {
case MHI_ER_DATA_ELEMENT_TYPE:
mhi_event->process_event = mhi_process_data_event_ring;
break;
case MHI_ER_CTRL_ELEMENT_TYPE:
mhi_event->process_event = mhi_process_ctrl_ev_ring;
break;
case MHI_ER_TSYNC_ELEMENT_TYPE:
mhi_event->process_event = mhi_process_tsync_event_ring;
break;
}
mhi_event->hw_ring = of_property_read_bool(child, "mhi,hw-ev");
if (mhi_event->hw_ring)
mhi_cntrl->hw_ev_rings++;
else
mhi_cntrl->sw_ev_rings++;
mhi_event->cl_manage = of_property_read_bool(child,
"mhi,client-manage");
mhi_event->offload_ev = of_property_read_bool(child,
"mhi,offload");
mhi_event++;
}
/* we need msi for each event ring + additional one for BHI */
mhi_cntrl->msi_required = mhi_cntrl->total_ev_rings + 1;
return 0;
error_ev_cfg:
kfree(mhi_cntrl->mhi_event);
return -EINVAL;
}
static int of_parse_ch_cfg(struct mhi_controller *mhi_cntrl,
struct device_node *of_node)
{
int ret;
struct device_node *child;
u32 chan;
ret = of_property_read_u32(of_node, "mhi,max-channels",
&mhi_cntrl->max_chan);
if (ret)
return ret;
of_node = of_find_node_by_name(of_node, "mhi_channels");
if (!of_node)
return -EINVAL;
mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan,
sizeof(*mhi_cntrl->mhi_chan), GFP_KERNEL);
if (!mhi_cntrl->mhi_chan)
return -ENOMEM;
INIT_LIST_HEAD(&mhi_cntrl->lpm_chans);
/* populate channel configurations */
for_each_available_child_of_node(of_node, child) {
struct mhi_chan *mhi_chan;
if (strcmp(child->name, "mhi_chan"))
continue;
ret = of_property_read_u32(child, "reg", &chan);
if (ret || chan >= mhi_cntrl->max_chan)
goto error_chan_cfg;
mhi_chan = &mhi_cntrl->mhi_chan[chan];
ret = of_property_read_string(child, "label",
&mhi_chan->name);
if (ret)
goto error_chan_cfg;
mhi_chan->chan = chan;
ret = of_property_read_u32(child, "mhi,num-elements",
(u32 *)&mhi_chan->tre_ring.elements);
if (!ret && !mhi_chan->tre_ring.elements)
goto error_chan_cfg;
/*
* For some channels, local ring len should be bigger than
* transfer ring len due to internal logical channels in device.
* So host can queue much more buffers than transfer ring len.
* Example, RSC channels should have a larger local channel
* than transfer ring length.
*/
ret = of_property_read_u32(child, "mhi,local-elements",
(u32 *)&mhi_chan->buf_ring.elements);
if (ret)
mhi_chan->buf_ring.elements =
mhi_chan->tre_ring.elements;
ret = of_property_read_u32(child, "mhi,event-ring",
&mhi_chan->er_index);
if (ret)
goto error_chan_cfg;
ret = of_property_read_u32(child, "mhi,chan-dir",
&mhi_chan->dir);
if (ret)
goto error_chan_cfg;
/*
* For most channels, chtype is identical to channel directions,
* if not defined, assign ch direction to chtype
*/
ret = of_property_read_u32(child, "mhi,chan-type",
&mhi_chan->type);
if (ret)
mhi_chan->type = (enum mhi_ch_type)mhi_chan->dir;
ret = of_property_read_u32(child, "mhi,ee", &mhi_chan->ee_mask);
if (ret)
goto error_chan_cfg;
of_property_read_u32(child, "mhi,pollcfg",
&mhi_chan->db_cfg.pollcfg);
ret = of_property_read_u32(child, "mhi,data-type",
&mhi_chan->xfer_type);
if (ret)
goto error_chan_cfg;
switch (mhi_chan->xfer_type) {
case MHI_XFER_BUFFER:
mhi_chan->gen_tre = mhi_gen_tre;
mhi_chan->queue_xfer = mhi_queue_buf;
break;
case MHI_XFER_SKB:
mhi_chan->queue_xfer = mhi_queue_skb;
break;
case MHI_XFER_SCLIST:
mhi_chan->gen_tre = mhi_gen_tre;
mhi_chan->queue_xfer = mhi_queue_sclist;
break;
case MHI_XFER_NOP:
mhi_chan->queue_xfer = mhi_queue_nop;
break;
case MHI_XFER_DMA:
case MHI_XFER_RSC_DMA:
mhi_chan->queue_xfer = mhi_queue_dma;
break;
default:
goto error_chan_cfg;
}
mhi_chan->lpm_notify = of_property_read_bool(child,
"mhi,lpm-notify");
mhi_chan->offload_ch = of_property_read_bool(child,
"mhi,offload-chan");
mhi_chan->db_cfg.reset_req = of_property_read_bool(child,
"mhi,db-mode-switch");
mhi_chan->pre_alloc = of_property_read_bool(child,
"mhi,auto-queue");
mhi_chan->auto_start = of_property_read_bool(child,
"mhi,auto-start");
mhi_chan->wake_capable = of_property_read_bool(child,
"mhi,wake-capable");
if (mhi_chan->pre_alloc &&
(mhi_chan->dir != DMA_FROM_DEVICE ||
mhi_chan->xfer_type != MHI_XFER_BUFFER))
goto error_chan_cfg;
/* bi-dir and dirctionless channels must be a offload chan */
if ((mhi_chan->dir == DMA_BIDIRECTIONAL ||
mhi_chan->dir == DMA_NONE) && !mhi_chan->offload_ch)
goto error_chan_cfg;
/* if mhi host allocate the buffers then client cannot queue */
if (mhi_chan->pre_alloc)
mhi_chan->queue_xfer = mhi_queue_nop;
if (!mhi_chan->offload_ch) {
ret = of_property_read_u32(child, "mhi,doorbell-mode",
&mhi_chan->db_cfg.brstmode);
if (ret ||
MHI_INVALID_BRSTMODE(mhi_chan->db_cfg.brstmode))
goto error_chan_cfg;
mhi_chan->db_cfg.process_db =
(mhi_chan->db_cfg.brstmode ==
MHI_BRSTMODE_ENABLE) ?
mhi_db_brstmode : mhi_db_brstmode_disable;
}
mhi_chan->configured = true;
if (mhi_chan->lpm_notify)
list_add_tail(&mhi_chan->node, &mhi_cntrl->lpm_chans);
}
return 0;
error_chan_cfg:
kfree(mhi_cntrl->mhi_chan);
return -EINVAL;
}
#else
static int of_parse_ev_cfg(struct mhi_controller *mhi_cntrl,
struct device_node *of_node)
{
int i, num = 0;
struct mhi_event *mhi_event;
num = NUM_MHI_EVT_RINGS;
mhi_cntrl->total_ev_rings = num;
mhi_cntrl->mhi_event = kcalloc(num, sizeof(*mhi_cntrl->mhi_event),
GFP_KERNEL);
if (!mhi_cntrl->mhi_event)
return -ENOMEM;
mhi_cntrl->msi_irq_base = 0;
/* populate ev ring */
mhi_event = mhi_cntrl->mhi_event;
i = 0;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++) {
mhi_event->er_index = i;
mhi_event->ring.elements = NUM_MHI_EVT_RING_ELEMENTS; //Event ring length in elements
if (i == PRIMARY_EVENT_RING)
mhi_event->ring.elements = 256; //256 is enough, and 1024 some times make driver fail to open channel (reason is x6x fail to malloc)
mhi_event->intmod = 1; //Interrupt moderation time in ms
#ifdef ENABLE_ADPL
if (i == ADPL_EVT_RING)
mhi_event->ring.elements = 256;
#endif
#ifdef ENABLE_QDSS
if (i == QDSS_EVT_RING)
mhi_event->ring.elements = 512;
#endif
/* see mhi_netdev_status_cb(), when interrupt come, the napi_poll maybe scheduled, so can reduce interrupts
root@OpenWrt:/# cat /proc/interrupts | grep mhi
root@OpenWrt:/# cat /sys/kernel/debug/mhi_q/mhi_netdev/pcie_mhi_0306_00.01.00_0/rx_int
*/
if (i == IPA_IN_EVENT_RING)
mhi_event->intmod = 5;
#ifdef ENABLE_IP_SW0
if (i == SW_0_IN_EVT_RING)
mhi_event->intmod = 5;
#endif
#ifdef ENABLE_ADPL
if (i == ADPL_EVT_RING)
mhi_event->intmod = 0;
#endif
#ifdef ENABLE_QDSS
if (i == QDSS_EVT_RING)
mhi_event->intmod = 0;
#endif
mhi_event->msi = 1 + i + mhi_cntrl->msi_irq_base; //MSI associated with this event ring
if (i == IPA_OUT_EVENT_RING)
mhi_event->chan = MHI_CLIENT_IP_HW_0_OUT; //Dedicated channel number, if it's a dedicated event ring
else if (i == IPA_IN_EVENT_RING)
mhi_event->chan = MHI_CLIENT_IP_HW_0_IN; //Dedicated channel number, if it's a dedicated event ring
#ifdef ENABLE_IP_SW0
else if (i == SW_0_OUT_EVT_RING)
mhi_event->chan = MHI_CLIENT_IP_SW_0_OUT;
else if (i == SW_0_IN_EVT_RING)
mhi_event->chan = MHI_CLIENT_IP_SW_0_IN;
#endif
#ifdef ENABLE_ADPL
else if (i == ADPL_EVT_RING)
mhi_event->chan = MHI_CLIENT_ADPL;
#endif
#ifdef ENABLE_QDSS
else if (i == QDSS_EVT_RING)
mhi_event->chan = MHI_CLIENT_IP_HW_QDSS;
#endif
else
mhi_event->chan = 0;
/* this event ring has a dedicated channel */
mhi_event->mhi_chan =
&mhi_cntrl->mhi_chan[mhi_event->chan];
mhi_event->priority = 1; //Event ring priority, set to 1 for now
if (mhi_event->chan && mhi_event->mhi_chan->db_cfg.brstmode == MHI_BRSTMODE_ENABLE)
mhi_event->db_cfg.brstmode = MHI_BRSTMODE_ENABLE;
else
mhi_event->db_cfg.brstmode = MHI_BRSTMODE_DISABLE;
mhi_event->db_cfg.process_db =
(mhi_event->db_cfg.brstmode == MHI_BRSTMODE_ENABLE) ?
mhi_db_brstmode : mhi_db_brstmode_disable;
if (i == IPA_OUT_EVENT_RING || i == IPA_IN_EVENT_RING)
mhi_event->data_type = MHI_ER_DATA_ELEMENT_TYPE;
#ifdef ENABLE_IP_SW0
else if (i == SW_0_OUT_EVT_RING || i == SW_0_IN_EVT_RING)
mhi_event->data_type = MHI_ER_DATA_ELEMENT_TYPE;
#endif
#ifdef ENABLE_ADPL
else if (i == ADPL_EVT_RING)
mhi_event->data_type = MHI_ER_DATA_ELEMENT_TYPE;
#endif
#ifdef ENABLE_QDSS
else if (i == QDSS_EVT_RING)
mhi_event->data_type = MHI_ER_DATA_ELEMENT_TYPE;
#endif
else
mhi_event->data_type = MHI_ER_CTRL_ELEMENT_TYPE;
switch (mhi_event->data_type) {
case MHI_ER_DATA_ELEMENT_TYPE:
mhi_event->process_event = mhi_process_data_event_ring;
break;
case MHI_ER_CTRL_ELEMENT_TYPE:
mhi_event->process_event = mhi_process_ctrl_ev_ring;
break;
case MHI_ER_TSYNC_ELEMENT_TYPE:
mhi_event->process_event = mhi_process_tsync_event_ring;
break;
}
if (i == IPA_OUT_EVENT_RING || i == IPA_IN_EVENT_RING
#ifdef ENABLE_ADPL
|| i == ADPL_EVT_RING
#endif
#ifdef ENABLE_QDSS
|| i == QDSS_EVT_RING
#endif
)
mhi_event->hw_ring = true;
else
mhi_event->hw_ring = false;
if (mhi_event->hw_ring)
mhi_cntrl->hw_ev_rings++;
else
mhi_cntrl->sw_ev_rings++;
mhi_event->cl_manage = false;
if (mhi_event->chan == MHI_CLIENT_IP_HW_0_IN || mhi_event->chan == MHI_CLIENT_IP_SW_0_IN)
mhi_event->cl_manage = true;
mhi_event->offload_ev = false;
mhi_event++;
}
/* we need msi for each event ring + additional one for BHI */
mhi_cntrl->msi_required = mhi_cntrl->total_ev_rings + 1 + mhi_cntrl->msi_irq_base;
return 0;
}
struct chan_cfg_t {
const char *chan_name;
u32 chan_id;
u32 elements;
};
static struct chan_cfg_t chan_cfg[] = {
//"Qualcomm PCIe Loopback"
{"LOOPBACK", MHI_CLIENT_LOOPBACK_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
{"LOOPBACK", MHI_CLIENT_LOOPBACK_IN, NUM_MHI_CHAN_RING_ELEMENTS},
//"Qualcomm PCIe Sahara"
{"SAHARA", MHI_CLIENT_SAHARA_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
{"SAHARA", MHI_CLIENT_SAHARA_IN, NUM_MHI_CHAN_RING_ELEMENTS},
//"Qualcomm PCIe Diagnostics"
{"DIAG", MHI_CLIENT_DIAG_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
{"DIAG", MHI_CLIENT_DIAG_IN, NUM_MHI_DIAG_IN_RING_ELEMENTS},
//"Qualcomm PCIe QDSS Data"
//"Do not use this QDSS. xingduo.du 2023-02-16"
// {"QDSS", MHI_CLIENT_QDSS_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
// {"QDSS", MHI_CLIENT_QDSS_IN, NUM_MHI_CHAN_RING_ELEMENTS},
//"Qualcomm PCIe EFS"
{"EFS", MHI_CLIENT_EFS_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
{"EFS", MHI_CLIENT_EFS_IN, NUM_MHI_CHAN_RING_ELEMENTS},
//"Qualcomm PCIe MBIM"
{"MBIM", MHI_CLIENT_MBIM_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
{"MBIM", MHI_CLIENT_MBIM_IN, NUM_MHI_CHAN_RING_ELEMENTS},
//"Qualcomm PCIe QMI"
{"QMI0", MHI_CLIENT_QMI_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
{"QMI0", MHI_CLIENT_QMI_IN, NUM_MHI_CHAN_RING_ELEMENTS},
//"Qualcomm PCIe QMI"
//{"QMI1", MHI_CLIENT_QMI_2_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
//{"QMI1", MHI_CLIENT_QMI_2_IN, NUM_MHI_CHAN_RING_ELEMENTS},
//"Qualcomm PCIe IP CTRL"
{"IP_CTRL", MHI_CLIENT_IP_CTRL_1_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
{"IP_CTRL", MHI_CLIENT_IP_CTRL_1_IN, NUM_MHI_CHAN_RING_ELEMENTS},
#if 0 //AG15
//"Qualcomm PCIe IPCR"
{"IPCR", MHI_CLIENT_DIAG_CONS_IF_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
{"IPCR", MHI_CLIENT_DIAG_CONS_IF_IN, NUM_MHI_CHAN_RING_ELEMENTS},
#endif
//"Qualcomm PCIe Boot Logging"
//{"BL", MHI_CLIENT_BOOT_LOG_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
//{"BL", MHI_CLIENT_BOOT_LOG_IN, NUM_MHI_CHAN_RING_ELEMENTS},
//"Qualcomm PCIe Modem"
{"DUN", MHI_CLIENT_DUN_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
{"DUN", MHI_CLIENT_DUN_IN, NUM_MHI_CHAN_RING_ELEMENTS},
//"Qualcomm EDL "
{"EDL", MHI_CLIENT_EDL_OUT, NUM_MHI_CHAN_RING_ELEMENTS},
{"EDL", MHI_CLIENT_EDL_IN, NUM_MHI_CHAN_RING_ELEMENTS},
#ifdef ENABLE_IP_SW0
//"Qualcomm PCIe LOCAL Adapter"
{"IP_SW0", MHI_CLIENT_IP_SW_0_OUT, NUM_MHI_SW_IP_RING_ELEMENTS},
{"IP_SW0", MHI_CLIENT_IP_SW_0_IN, NUM_MHI_SW_IP_RING_ELEMENTS},
#endif
//"Qualcomm PCIe WWAN Adapter"
{"IP_HW0", MHI_CLIENT_IP_HW_0_OUT, NUM_MHI_IPA_OUT_RING_ELEMENTS},
{"IP_HW0", MHI_CLIENT_IP_HW_0_IN, NUM_MHI_IPA_IN_RING_ELEMENTS},
#ifdef ENABLE_ADPL
{"ADPL", MHI_CLIENT_ADPL, NUM_MHI_ADPL_RING_ELEMENTS},
#endif
#ifdef ENABLE_QDSS
{"QDSS", MHI_CLIENT_IP_HW_QDSS, NUM_MHI_QDSS_RING_ELEMENTS},
#endif
};
extern int mhi_netdev_mbin_enabled(void);
static int of_parse_ch_cfg(struct mhi_controller *mhi_cntrl,
struct device_node *of_node)
{
u32 chan;
u32 i, num;
u32 ring = 0;
mhi_cntrl->max_chan = MHI_MAX_CHANNELS;
num = sizeof(chan_cfg)/sizeof(chan_cfg[0]);
mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan,
sizeof(*mhi_cntrl->mhi_chan), GFP_KERNEL);
if (!mhi_cntrl->mhi_chan)
return -ENOMEM;
INIT_LIST_HEAD(&mhi_cntrl->lpm_chans);
/* populate channel configurations */
for (i = 0; i < num; i++) {
struct mhi_chan *mhi_chan;
if (!strncmp( chan_cfg[i].chan_name, "MBIM", 4)) {
if (!mhi_netdev_mbin_enabled())
continue;
}
else if (!strncmp( chan_cfg[i].chan_name, "QMI", 3)) {
if (mhi_netdev_mbin_enabled())
continue;
}
chan = chan_cfg[i].chan_id;
mhi_chan = &mhi_cntrl->mhi_chan[chan];
mhi_chan->name = chan_cfg[i].chan_name;
mhi_chan->chan = chan;
mhi_chan->tre_ring.elements = chan_cfg[i].elements;
/*
* For some channels, local ring len should be bigger than
* transfer ring len due to internal logical channels in device.
* So host can queue much more buffers than transfer ring len.
* Example, RSC channels should have a larger local channel
* than transfer ring length.
*/
mhi_chan->buf_ring.elements = mhi_chan->tre_ring.elements;
if (chan == MHI_CLIENT_IP_HW_0_OUT || chan == MHI_CLIENT_IP_HW_0_IN || chan == MHI_CLIENT_DIAG_IN
|| chan == MHI_CLIENT_IP_SW_0_OUT || chan == MHI_CLIENT_IP_SW_0_IN
#ifdef ENABLE_ADPL
|| chan == MHI_CLIENT_ADPL
#endif
#ifdef ENABLE_QDSS
|| chan == MHI_CLIENT_IP_HW_QDSS
#endif
) {
mhi_chan->ring = 0;
}
else {
mhi_chan->ring = ring;
ring += mhi_chan->buf_ring.elements;
}
if (chan == MHI_CLIENT_IP_HW_0_OUT)
mhi_chan->er_index = IPA_OUT_EVENT_RING;
else if (chan == MHI_CLIENT_IP_HW_0_IN)
mhi_chan->er_index = IPA_IN_EVENT_RING;
#ifdef ENABLE_IP_SW0
else if (chan == MHI_CLIENT_IP_SW_0_OUT)
mhi_chan->er_index = SW_0_OUT_EVT_RING;
else if (chan == MHI_CLIENT_IP_SW_0_IN)
mhi_chan->er_index = SW_0_IN_EVT_RING;
#endif
#ifdef ENABLE_ADPL
else if (chan == MHI_CLIENT_ADPL)
mhi_chan->er_index = ADPL_EVT_RING;
#endif
#ifdef ENABLE_QDSS
else if (chan == MHI_CLIENT_IP_HW_QDSS)
mhi_chan->er_index = QDSS_EVT_RING;
#endif
else
mhi_chan->er_index = PRIMARY_EVENT_RING;
mhi_chan->dir = CHAN_INBOUND(chan) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
#ifdef ENABLE_ADPL
if (chan == MHI_CLIENT_ADPL)
mhi_chan->dir = DMA_FROM_DEVICE;
#endif
#ifdef ENABLE_QDSS
if (chan == MHI_CLIENT_IP_HW_QDSS)
mhi_chan->dir = DMA_FROM_DEVICE;
#endif
/*
* For most channels, chtype is identical to channel directions,
* if not defined, assign ch direction to chtype
*/
mhi_chan->type = (enum mhi_ch_type)mhi_chan->dir;
mhi_chan->ee_mask = BIT(MHI_EE_AMSS);
if (CHAN_SBL(chan))
mhi_chan->ee_mask = BIT(MHI_EE_SBL);
else if (CHAN_EDL(chan))
mhi_chan->ee_mask = BIT(MHI_EE_FP);
mhi_chan->db_cfg.pollcfg = 0;
if (chan == MHI_CLIENT_IP_HW_0_OUT || chan == MHI_CLIENT_IP_SW_0_OUT)
mhi_chan->xfer_type = MHI_XFER_SKB;
else if (chan == MHI_CLIENT_IP_HW_0_IN || chan == MHI_CLIENT_IP_SW_0_IN)
mhi_chan->xfer_type = MHI_XFER_SKB; //MHI_XFER_DMA;
#ifdef ENABLE_ADPL
else if (chan == MHI_CLIENT_ADPL)
mhi_chan->xfer_type = MHI_XFER_BUFFER;
#endif
#ifdef ENABLE_QDSS
else if (chan == MHI_CLIENT_IP_HW_QDSS)
mhi_chan->xfer_type = MHI_XFER_BUFFER;
#endif
else
mhi_chan->xfer_type = MHI_XFER_BUFFER;
if (chan_cfg[i].elements == 0) {
mhi_chan->dir = DMA_BIDIRECTIONAL;
mhi_chan->xfer_type = MHI_XFER_NOP;
}
switch (mhi_chan->xfer_type) {
case MHI_XFER_BUFFER:
mhi_chan->gen_tre = mhi_gen_tre;
mhi_chan->queue_xfer = mhi_queue_buf;
break;
case MHI_XFER_SKB:
mhi_chan->queue_xfer = mhi_queue_skb;
break;
case MHI_XFER_SCLIST:
mhi_chan->gen_tre = mhi_gen_tre;
mhi_chan->queue_xfer = mhi_queue_sclist;
break;
case MHI_XFER_NOP:
mhi_chan->queue_xfer = mhi_queue_nop;
break;
case MHI_XFER_DMA:
case MHI_XFER_RSC_DMA:
mhi_chan->queue_xfer = mhi_queue_dma;
break;
default:
goto error_chan_cfg;
}
mhi_chan->lpm_notify = false;
mhi_chan->offload_ch = (chan_cfg[i].elements == 0);
mhi_chan->db_cfg.reset_req = false;
mhi_chan->pre_alloc = false;
mhi_chan->auto_start = false;
mhi_chan->wake_capable = false;
if (mhi_chan->pre_alloc &&
(mhi_chan->dir != DMA_FROM_DEVICE ||
mhi_chan->xfer_type != MHI_XFER_BUFFER))
goto error_chan_cfg;
/* bi-dir and dirctionless channels must be a offload chan */
if ((mhi_chan->dir == DMA_BIDIRECTIONAL ||
mhi_chan->dir == DMA_NONE) && !mhi_chan->offload_ch)
goto error_chan_cfg;
/* if mhi host allocate the buffers then client cannot queue */
if (mhi_chan->pre_alloc)
mhi_chan->queue_xfer = mhi_queue_nop;
if (!mhi_chan->offload_ch) {
mhi_chan->db_cfg.brstmode = MHI_BRSTMODE_DISABLE;
if (chan == MHI_CLIENT_IP_HW_0_OUT || chan == MHI_CLIENT_IP_HW_0_IN)
mhi_chan->db_cfg.brstmode = MHI_BRSTMODE_ENABLE;
#ifdef ENABLE_ADPL
if (chan == MHI_CLIENT_ADPL)
mhi_chan->db_cfg.brstmode = MHI_BRSTMODE_DISABLE;
#endif
#ifdef ENABLE_QDSS
if (chan == MHI_CLIENT_IP_HW_QDSS)
mhi_chan->db_cfg.brstmode = MHI_BRSTMODE_DISABLE;
#endif
if (MHI_INVALID_BRSTMODE(mhi_chan->db_cfg.brstmode))
goto error_chan_cfg;
mhi_chan->db_cfg.process_db =
(mhi_chan->db_cfg.brstmode ==
MHI_BRSTMODE_ENABLE) ?
mhi_db_brstmode : mhi_db_brstmode_disable;
}
mhi_chan->configured = true;
if (mhi_chan->lpm_notify)
list_add_tail(&mhi_chan->node, &mhi_cntrl->lpm_chans);
}
return 0;
error_chan_cfg:
kfree(mhi_cntrl->mhi_chan);
return -EINVAL;
}
#endif
static int of_parse_dt(struct mhi_controller *mhi_cntrl,
struct device_node *of_node)
{
int ret;
/* parse MHI channel configuration */
ret = of_parse_ch_cfg(mhi_cntrl, of_node);
if (ret)
return ret;
/* parse MHI event configuration */
ret = of_parse_ev_cfg(mhi_cntrl, of_node);
if (ret)
goto error_ev_cfg;
#if defined(QCOM_AP_QCA6490_DMA_IOMMU)
/* for QCS6490 iommu-dma is fastmap
for SG845 iommu-dma is set in driver
for ipq iommu-dma is disabled
*/
const char *str;
ret = of_property_read_string(of_node, "qcom,iommu-dma", &str);
if (ret)
MHI_ERR("mhi qcom,iommu-dma need set");
#endif
#if 0
ret = of_property_read_u32(of_node, "mhi,timeout",
&mhi_cntrl->timeout_ms);
if (ret)
mhi_cntrl->timeout_ms = MHI_TIMEOUT_MS;
mhi_cntrl->bounce_buf = of_property_read_bool(of_node, "mhi,use-bb");
ret = of_property_read_u32(of_node, "mhi,buffer-len",
(u32 *)&mhi_cntrl->buffer_len);
if (ret)
mhi_cntrl->buffer_len = MHI_MAX_MTU;
#else
mhi_cntrl->timeout_ms = MHI_TIMEOUT_MS;
mhi_cntrl->bounce_buf = false;
mhi_cntrl->buffer_len = MHI_MAX_MTU;
#endif
return 0;
error_ev_cfg:
kfree(mhi_cntrl->mhi_chan);
return ret;
}
int of_register_mhi_controller(struct mhi_controller *mhi_cntrl)
{
int ret;
int i;
struct mhi_event *mhi_event;
struct mhi_chan *mhi_chan;
struct mhi_cmd *mhi_cmd;
struct mhi_device *mhi_dev;
//if (!mhi_cntrl->of_node)
// return -EINVAL;
for (i = 0; i < MAX_MHI_CONTROLLER; i++) {
if (mhi_controller_minors[i].dev_id == mhi_cntrl->dev_id
&& mhi_controller_minors[i].domain == mhi_cntrl->domain
&& mhi_controller_minors[i].bus == mhi_cntrl->bus
&& mhi_controller_minors[i].slot == mhi_cntrl->slot) {
mhi_cntrl->cntrl_idx = i;
break;
}
else if (mhi_controller_minors[i].dev_id == 0
&& mhi_controller_minors[i].domain == 0
&& mhi_controller_minors[i].bus == 0
&& mhi_controller_minors[i].slot == 0) {
mhi_controller_minors[i].dev_id = mhi_cntrl->dev_id;
mhi_controller_minors[i].domain = mhi_cntrl->domain;
mhi_controller_minors[i].bus = mhi_cntrl->bus;
mhi_controller_minors[i].slot = mhi_cntrl->slot;
mhi_controller_minors[i].mhi_cntrl = mhi_cntrl;
mhi_cntrl->cntrl_idx = i;
break;
}
}
if (i == MAX_MHI_CONTROLLER)
return -EINVAL;
if (!mhi_cntrl->runtime_get || !mhi_cntrl->runtime_put)
return -EINVAL;
if (!mhi_cntrl->status_cb || !mhi_cntrl->link_status)
return -EINVAL;
ret = of_parse_dt(mhi_cntrl, mhi_cntrl->of_node);
if (ret)
return -EINVAL;
mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS,
sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
if (!mhi_cntrl->mhi_cmd) {
ret = -ENOMEM;
goto error_alloc_cmd;
}
INIT_LIST_HEAD(&mhi_cntrl->transition_list);
mutex_init(&mhi_cntrl->pm_mutex);
rwlock_init(&mhi_cntrl->pm_lock);
spin_lock_init(&mhi_cntrl->transition_lock);
spin_lock_init(&mhi_cntrl->wlock);
INIT_WORK(&mhi_cntrl->st_worker, mhi_pm_st_worker);
INIT_WORK(&mhi_cntrl->fw_worker, mhi_fw_load_worker);
INIT_WORK(&mhi_cntrl->syserr_worker, mhi_pm_sys_err_worker);
INIT_DELAYED_WORK(&mhi_cntrl->ready_worker, mhi_pm_ready_worker);
init_waitqueue_head(&mhi_cntrl->state_event);
mhi_cmd = mhi_cntrl->mhi_cmd;
for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++)
spin_lock_init(&mhi_cmd->lock);
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
if (mhi_event->offload_ev)
continue;
mhi_event->mhi_cntrl = mhi_cntrl;
spin_lock_init(&mhi_event->lock);
if (mhi_event->data_type == MHI_ER_CTRL_ELEMENT_TYPE)
tasklet_init(&mhi_event->task, mhi_ctrl_ev_task,
(ulong)mhi_event);
else
tasklet_init(&mhi_event->task, mhi_ev_task,
(ulong)mhi_event);
}
mhi_chan = mhi_cntrl->mhi_chan;
for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
mutex_init(&mhi_chan->mutex);
init_completion(&mhi_chan->completion);
rwlock_init(&mhi_chan->lock);
}
if (mhi_cntrl->bounce_buf) {
mhi_cntrl->map_single = mhi_map_single_use_bb;
mhi_cntrl->unmap_single = mhi_unmap_single_use_bb;
} else {
mhi_cntrl->map_single = mhi_map_single_no_bb;
mhi_cntrl->unmap_single = mhi_unmap_single_no_bb;
}
/* register controller with mhi_bus */
mhi_dev = mhi_alloc_device(mhi_cntrl);
if (!mhi_dev) {
ret = -ENOMEM;
goto error_alloc_dev;
}
mhi_dev->dev_type = MHI_CONTROLLER_TYPE;
mhi_dev->mhi_cntrl = mhi_cntrl;
dev_set_name(&mhi_dev->dev, "%04x_%02u.%02u.%02u", mhi_dev->dev_id,
mhi_dev->domain, mhi_dev->bus, mhi_dev->slot);
ret = device_add(&mhi_dev->dev);
if (ret)
goto error_add_dev;
if (mhi_cntrl->cntrl_idx)
mhi_cntrl->cntrl_dev = device_create(mhi_cntrl_drv.class, mhi_cntrl->dev,
MKDEV(mhi_cntrl_drv.major, mhi_cntrl->cntrl_idx), NULL,
"mhi_BHI%d", mhi_cntrl->cntrl_idx);
else
mhi_cntrl->cntrl_dev = device_create(mhi_cntrl_drv.class, mhi_cntrl->dev,
MKDEV(mhi_cntrl_drv.major, mhi_cntrl->cntrl_idx), NULL,
"mhi_BHI");
mhi_cntrl->mhi_dev = mhi_dev;
mhi_cntrl->parent = mhi_bus.dentry;
mhi_cntrl->klog_lvl = MHI_MSG_LVL_ERROR;
/* adding it to this list only for debug purpose */
mutex_lock(&mhi_bus.lock);
list_add_tail(&mhi_cntrl->node, &mhi_bus.controller_list);
mutex_unlock(&mhi_bus.lock);
return 0;
error_add_dev:
mhi_dealloc_device(mhi_cntrl, mhi_dev);
error_alloc_dev:
kfree(mhi_cntrl->mhi_cmd);
error_alloc_cmd:
kfree(mhi_cntrl->mhi_chan);
kfree(mhi_cntrl->mhi_event);
return ret;
};
EXPORT_SYMBOL(of_register_mhi_controller);
void mhi_unregister_mhi_controller(struct mhi_controller *mhi_cntrl)
{
struct mhi_device *mhi_dev = mhi_cntrl->mhi_dev;
kfree(mhi_cntrl->mhi_cmd);
kfree(mhi_cntrl->mhi_event);
kfree(mhi_cntrl->mhi_chan);
kfree(mhi_cntrl->mhi_tsync);
if (mhi_cntrl->cntrl_dev)
device_destroy(mhi_cntrl_drv.class, MKDEV(mhi_cntrl_drv.major, mhi_cntrl->cntrl_idx));
device_del(&mhi_dev->dev);
put_device(&mhi_dev->dev);
mutex_lock(&mhi_bus.lock);
list_del(&mhi_cntrl->node);
mutex_unlock(&mhi_bus.lock);
}
/* set ptr to control private data */
static inline void mhi_controller_set_devdata(struct mhi_controller *mhi_cntrl,
void *priv)
{
mhi_cntrl->priv_data = priv;
}
/* allocate mhi controller to register */
struct mhi_controller *mhi_alloc_controller(size_t size)
{
struct mhi_controller *mhi_cntrl;
mhi_cntrl = kzalloc(size + sizeof(*mhi_cntrl), GFP_KERNEL);
if (mhi_cntrl && size)
mhi_controller_set_devdata(mhi_cntrl, mhi_cntrl + 1);
return mhi_cntrl;
}
EXPORT_SYMBOL(mhi_alloc_controller);
int mhi_prepare_for_power_up(struct mhi_controller *mhi_cntrl)
{
int ret;
u32 bhie_off;
mutex_lock(&mhi_cntrl->pm_mutex);
ret = mhi_init_dev_ctxt(mhi_cntrl);
if (ret) {
MHI_ERR("Error with init dev_ctxt\n");
goto error_dev_ctxt;
}
ret = mhi_init_irq_setup(mhi_cntrl);
if (ret) {
MHI_ERR("Error setting up irq\n");
goto error_setup_irq;
}
/*
* allocate rddm table if specified, this table is for debug purpose
* so we'll ignore erros
*/
if (mhi_cntrl->rddm_size) {
mhi_alloc_bhie_table(mhi_cntrl, &mhi_cntrl->rddm_image,
mhi_cntrl->rddm_size);
/*
* This controller supports rddm, we need to manually clear
* BHIE RX registers since por values are undefined.
*/
ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIEOFF,
&bhie_off);
if (ret) {
MHI_ERR("Error getting bhie offset\n");
goto bhie_error;
}
memset_io(mhi_cntrl->regs + bhie_off + BHIE_RXVECADDR_LOW_OFFS,
0, BHIE_RXVECSTATUS_OFFS - BHIE_RXVECADDR_LOW_OFFS +
4);
}
mhi_cntrl->pre_init = true;
mutex_unlock(&mhi_cntrl->pm_mutex);
return 0;
bhie_error:
if (mhi_cntrl->rddm_image) {
mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->rddm_image);
mhi_cntrl->rddm_image = NULL;
}
mhi_deinit_free_irq(mhi_cntrl);
error_setup_irq:
mhi_deinit_dev_ctxt(mhi_cntrl);
error_dev_ctxt:
mutex_unlock(&mhi_cntrl->pm_mutex);
return ret;
}
EXPORT_SYMBOL(mhi_prepare_for_power_up);
void mhi_unprepare_after_power_down(struct mhi_controller *mhi_cntrl)
{
if (mhi_cntrl->fbc_image) {
mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->fbc_image);
mhi_cntrl->fbc_image = NULL;
}
if (mhi_cntrl->rddm_image) {
mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->rddm_image);
mhi_cntrl->rddm_image = NULL;
}
mhi_deinit_free_irq(mhi_cntrl);
mhi_deinit_dev_ctxt(mhi_cntrl);
mhi_cntrl->pre_init = false;
}
/* match dev to drv */
static int mhi_match(struct device *dev, struct device_driver *drv)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_driver *mhi_drv = to_mhi_driver(drv);
const struct mhi_device_id *id;
/* if controller type there is no client driver associated with it */
if (mhi_dev->dev_type == MHI_CONTROLLER_TYPE)
return 0;
for (id = mhi_drv->id_table; id->chan[0]; id++)
if (!strcmp(mhi_dev->chan_name, id->chan)) {
mhi_dev->id = id;
return 1;
}
return 0;
};
static void mhi_release_device(struct device *dev)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
if (mhi_dev->ul_chan)
mhi_dev->ul_chan->mhi_dev = NULL;
if (mhi_dev->dl_chan)
mhi_dev->dl_chan->mhi_dev = NULL;
kfree(mhi_dev);
}
struct bus_type mhi_bus_type = {
.name = "mhi_q",
.dev_name = "mhi_q",
.match = mhi_match,
};
static int mhi_driver_probe(struct device *dev)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct device_driver *drv = dev->driver;
struct mhi_driver *mhi_drv = to_mhi_driver(drv);
struct mhi_event *mhi_event;
struct mhi_chan *ul_chan = mhi_dev->ul_chan;
struct mhi_chan *dl_chan = mhi_dev->dl_chan;
bool auto_start = false;
int ret;
/* bring device out of lpm */
ret = mhi_device_get_sync(mhi_dev);
if (ret)
return ret;
ret = -EINVAL;
if (ul_chan) {
/* lpm notification require status_cb */
if (ul_chan->lpm_notify && !mhi_drv->status_cb)
goto exit_probe;
if (!ul_chan->offload_ch && !mhi_drv->ul_xfer_cb)
goto exit_probe;
ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
mhi_dev->status_cb = mhi_drv->status_cb;
auto_start = ul_chan->auto_start;
}
if (dl_chan) {
if (dl_chan->lpm_notify && !mhi_drv->status_cb)
goto exit_probe;
if (!dl_chan->offload_ch && !mhi_drv->dl_xfer_cb)
goto exit_probe;
mhi_event = &mhi_cntrl->mhi_event[dl_chan->er_index];
/*
* if this channal event ring manage by client, then
* status_cb must be defined so we can send the async
* cb whenever there are pending data
*/
if (mhi_event->cl_manage && !mhi_drv->status_cb)
goto exit_probe;
dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
/* ul & dl uses same status cb */
mhi_dev->status_cb = mhi_drv->status_cb;
auto_start = (auto_start || dl_chan->auto_start);
}
ret = mhi_drv->probe(mhi_dev, mhi_dev->id);
if (!ret && auto_start)
mhi_prepare_for_transfer(mhi_dev);
exit_probe:
mhi_device_put(mhi_dev);
return ret;
}
static int mhi_driver_remove(struct device *dev)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_driver *mhi_drv = to_mhi_driver(dev->driver);
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_chan *mhi_chan;
enum MHI_CH_STATE ch_state[] = {
MHI_CH_STATE_DISABLED,
MHI_CH_STATE_DISABLED
};
int dir;
/* control device has no work to do */
if (mhi_dev->dev_type == MHI_CONTROLLER_TYPE)
return 0;
MHI_LOG("Removing device for chan:%s\n", mhi_dev->chan_name);
/* reset both channels */
for (dir = 0; dir < 2; dir++) {
mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
if (!mhi_chan)
continue;
/* wake all threads waiting for completion */
write_lock_irq(&mhi_chan->lock);
mhi_chan->ccs = MHI_EV_CC_INVALID;
complete_all(&mhi_chan->completion);
write_unlock_irq(&mhi_chan->lock);
/* move channel state to disable, no more processing */
mutex_lock(&mhi_chan->mutex);
write_lock_irq(&mhi_chan->lock);
ch_state[dir] = mhi_chan->ch_state;
mhi_chan->ch_state = MHI_CH_STATE_SUSPENDED;
write_unlock_irq(&mhi_chan->lock);
/* reset the channel */
if (!mhi_chan->offload_ch)
mhi_reset_chan(mhi_cntrl, mhi_chan);
mutex_unlock(&mhi_chan->mutex);
}
/* destroy the device */
mhi_drv->remove(mhi_dev);
/* de_init channel if it was enabled */
for (dir = 0; dir < 2; dir++) {
mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
if (!mhi_chan)
continue;
mutex_lock(&mhi_chan->mutex);
if (ch_state[dir] == MHI_CH_STATE_ENABLED &&
!mhi_chan->offload_ch)
mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan);
mhi_chan->ch_state = MHI_CH_STATE_DISABLED;
mutex_unlock(&mhi_chan->mutex);
}
if (mhi_cntrl->tsync_dev == mhi_dev)
mhi_cntrl->tsync_dev = NULL;
/* relinquish any pending votes */
read_lock_bh(&mhi_cntrl->pm_lock);
while (atomic_read(&mhi_dev->dev_wake))
mhi_device_put(mhi_dev);
read_unlock_bh(&mhi_cntrl->pm_lock);
return 0;
}
int mhi_driver_register(struct mhi_driver *mhi_drv)
{
struct device_driver *driver = &mhi_drv->driver;
if (!mhi_drv->probe || !mhi_drv->remove)
return -EINVAL;
driver->bus = &mhi_bus_type;
driver->probe = mhi_driver_probe;
driver->remove = mhi_driver_remove;
return driver_register(driver);
}
EXPORT_SYMBOL(mhi_driver_register);
void mhi_driver_unregister(struct mhi_driver *mhi_drv)
{
driver_unregister(&mhi_drv->driver);
}
EXPORT_SYMBOL(mhi_driver_unregister);
struct mhi_device *mhi_alloc_device(struct mhi_controller *mhi_cntrl)
{
struct mhi_device *mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
struct device *dev;
if (!mhi_dev)
return NULL;
dev = &mhi_dev->dev;
device_initialize(dev);
dev->bus = &mhi_bus_type;
dev->release = mhi_release_device;
dev->parent = mhi_cntrl->dev;
mhi_dev->mhi_cntrl = mhi_cntrl;
mhi_dev->vendor = mhi_cntrl->vendor;
mhi_dev->dev_id = mhi_cntrl->dev_id;
mhi_dev->domain = mhi_cntrl->domain;
mhi_dev->bus = mhi_cntrl->bus;
mhi_dev->slot = mhi_cntrl->slot;
mhi_dev->mtu = MHI_MAX_MTU;
atomic_set(&mhi_dev->dev_wake, 0);
return mhi_dev;
}
static int mhi_cntrl_open(struct inode *inode, struct file *f)
{
int ret = -ENODEV;
struct mhi_controller *mhi_cntrl;
mutex_lock(&mhi_bus.lock);
list_for_each_entry(mhi_cntrl, &mhi_bus.controller_list, node) {
if (MINOR(inode->i_rdev) == mhi_cntrl->cntrl_idx) {
ret = 0;
f->private_data = mhi_cntrl;
break;
}
}
mutex_unlock(&mhi_bus.lock);
return ret;
}
static int mhi_cntrl_release(struct inode *inode, struct file *f)
{
f->private_data = NULL;
return 0;
}
#define IOCTL_BHI_GETDEVINFO 0x8BE0 + 1
#define IOCTL_BHI_WRITEIMAGE 0x8BE0 + 2
long bhi_get_dev_info(struct mhi_controller *mhi_cntrl, void __user *to);
long bhi_write_image(struct mhi_controller *mhi_cntrl, void __user *from);
static long mhi_cntrl_ioctl(struct file *f, unsigned int cmd, unsigned long __arg)
{
long ret = -ENODEV;
struct mhi_controller *mhi_cntrl;
mutex_lock(&mhi_bus.lock);
list_for_each_entry(mhi_cntrl, &mhi_bus.controller_list, node) {
if (mhi_cntrl == (struct mhi_controller *)f->private_data) {
ret = 0;
break;
}
}
mutex_unlock(&mhi_bus.lock);
if (ret)
return ret;
switch (cmd) {
case IOCTL_BHI_GETDEVINFO:
ret = bhi_get_dev_info(mhi_cntrl, (void __user *)__arg);
break;
case IOCTL_BHI_WRITEIMAGE:
ret = bhi_write_image(mhi_cntrl, (void __user *)__arg);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static const struct file_operations mhi_cntrl_fops = {
.unlocked_ioctl = mhi_cntrl_ioctl,
.open = mhi_cntrl_open,
.release = mhi_cntrl_release,
};
static int __init mhi_cntrl_init(void)
{
int ret;
ret = register_chrdev(0, MHI_CNTRL_DRIVER_NAME, &mhi_cntrl_fops);
if (ret < 0)
return ret;
mhi_cntrl_drv.major = ret;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(6, 4, 0))
mhi_cntrl_drv.class = class_create(MHI_CNTRL_DRIVER_NAME);
#else
mhi_cntrl_drv.class = class_create(THIS_MODULE, MHI_CNTRL_DRIVER_NAME);
#endif
if (IS_ERR(mhi_cntrl_drv.class)) {
unregister_chrdev(mhi_cntrl_drv.major, MHI_CNTRL_DRIVER_NAME);
return -ENODEV;
}
mutex_init(&mhi_cntrl_drv.lock);
INIT_LIST_HEAD(&mhi_cntrl_drv.head);
return 0;
}
void mhi_cntrl_exit(void)
{
class_destroy(mhi_cntrl_drv.class);
unregister_chrdev(mhi_cntrl_drv.major, MHI_CNTRL_DRIVER_NAME);
}
extern int mhi_dtr_init(void);
extern void mhi_dtr_exit(void);
extern int mhi_device_netdev_init(struct dentry *parent);
extern void mhi_device_netdev_exit(void);
extern int mhi_device_uci_init(void);
extern void mhi_device_uci_exit(void);
extern int mhi_controller_qcom_init(void);
extern void mhi_controller_qcom_exit(void);
static char mhi_version[] = "Quectel_Linux_PCIE_MHI_Driver_"PCIE_MHI_DRIVER_VERSION;
module_param_string(mhi_version, mhi_version, sizeof(mhi_version), S_IRUGO);
static int __init mhi_init(void)
{
int ret;
pr_info("%s %s\n", __func__, mhi_version);
mutex_init(&mhi_bus.lock);
INIT_LIST_HEAD(&mhi_bus.controller_list);
/* parent directory */
mhi_bus.dentry = debugfs_create_dir(mhi_bus_type.name, NULL);
ret = bus_register(&mhi_bus_type);
if (ret) {
pr_err("Error bus_register ret:%d\n", ret);
return ret;
}
ret = mhi_dtr_init();
if (ret) {
pr_err("Error mhi_dtr_init ret:%d\n", ret);
bus_unregister(&mhi_bus_type);
return ret;
}
ret = mhi_device_netdev_init(mhi_bus.dentry);
if (ret) {
pr_err("Error mhi_device_netdev_init ret:%d\n", ret);
}
ret = mhi_device_uci_init();
if (ret) {
pr_err("Error mhi_device_uci_init ret:%d\n", ret);
}
ret = mhi_cntrl_init();
if (ret) {
pr_err("Error mhi_cntrl_init ret:%d\n", ret);
}
ret = mhi_controller_qcom_init();
if (ret) {
pr_err("Error mhi_controller_qcom_init ret:%d\n", ret);
}
return ret;
}
static void mhi_exit(void)
{
mhi_controller_qcom_exit();
mhi_cntrl_exit();
mhi_device_uci_exit();
mhi_device_netdev_exit();
mhi_dtr_exit();
bus_unregister(&mhi_bus_type);
debugfs_remove_recursive(mhi_bus.dentry);
}
module_init(mhi_init);
module_exit(mhi_exit);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("MHI_CORE");
MODULE_DESCRIPTION("MHI Host Interface");